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VISCOUS LIQUID FLOW IN THE INITIAL SEGMENT OF A 
FLAT CHANNEL WITH POROUS WALLS 

V .  N . Va rapa yev 
ABSTRACT. The purpose o f  this article is to define the 
nature of the flow in the initial segment of a flat channel 
with a permeable and impermeable bottom. The investigation 
i s  conducted by means of a numerical solution o f  the Navier- 
Stokes equations by the finite-difference method. 

In certain technical problems flows are encountered in channels which /178* 
are formed as a result of the delivery of a fluid (or  gas) through the chan- 
nel walls (gas motion in a channel with porous walls, gas motion in the inter- 
nal channels of  powder charges, and fluid motion in wells). 
this type were studied theoretically in [l] and experimentally in [ Z ] .  During 
the experimental study of the transition from the laminar flow regime to the 
turbulent regime in pipes and annular channels with porous walls in [3] it 
was discovered that the flow conditions along the front closed end (the chan- 
nel bottom), where the results of the work [l] are not applicable, signifi- 
cantly affect the transition. 

Laminar flows of 

The aim of the present work is determining the nature of flow in the 
initial segment of a flat channel both for a case of an impermeable bottom as 
well as for a case of delivery or withdrawal of fluid through the bottom. 
investigation was accomplished by means of  the numerical solution of Navier- 
Stokes equations by the finite-difference method. 

The 

1 .  We shall examine the stationary flow of a viscous incompressible 
fluid in a semi-infinite flat channel with parallel permeable walls, through 
-which fluid is delivered at constant velocity vo., The initial section of 
the channel is the y-axis and the x-axis and is directed along the channel 
axis. 
vo and channel half-width a the flow under consideration in dimensionless 

If for characteristic velocity and length we take indraft velocity 

-variables will be described by the equation 
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Here R is the indraft Reynolds number, u is the kinematic viscosity 0 
coefficient, $ is the stream function, x and y are coordinates along and 
across the channel, and A is a Laplacian. 

Since we are examining the flow in thy initial segment of the channel 
we shall solve the problem in the region of Q = ( 0  <x < L, 0 < y  < 11, 
utilizing the flow symmetry relative to the channel axis. 
ditions f o r  (1.1) will be the symmetry conditions on the channel axis 

The boundary con- 

the indraft conditions and disappearing longitudinal veloc,ity component on 
the permeable wall 

(0 < .?: < L) 

and the adhesion conditions in the initial section 

(1.3) 

The question of the boundary conditions on the right boundary (x = L) 
will be examined below. 
of the channel the condition (1.4) is replaced by. 

In the case of indraft o r  suction through the bottom 

Here u1 is fluid indraft (or suction) velocity through the bottom (b > 0 

corresponds to indraft, while b < 0 corresponds to fluid suction). 

2 .  In the case of symmetrical fluid flow with respect to the initial 
channel section’, when in place of conditions involving adhesion to the bottom 
of the channel (1.4) conditions of symmetry occur 

-. 

and a solution to the problem exists, as obtained in [l] and has the form 



For t h e  func t ion  F(y) we obta in  t h e  equation /179 
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which must be solved with boundary conditions 

With l a rge  and small R numbers t h e  so lu t ion  of t h e  problem ( 2 . 3 ) ,  (2 .4)  0 
may be approximated i n  a n a l y t i c a l  form while i n  a general. case a numerical 
i n t e g r a t i o n  of t h i s  boundary va lue  problem i s  requi red .  
t i c  v e l o c i t y  we do not take  v but r a t h e r  t h e  v e l o c i t y  on t h e  channel ax i s  

i n  given s e c t i o n  u(x,  0) it follows f r o m  (2.2) t h a t  i n  a l l  channel s ec t ions  
t h e  v e l o c i t i e s  w i l l  be similar 

If f o r  cha rac t e r i s -  

0' 
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Figure 1. Figure 2. 

Experimental r e s u l t s  i n  t h e  works [2] and [3] r evea l  t h a t  although con- 
.- d i t i o n s  (1.4) o r  (1.5) are r e a l i z e d  i n  experiments, r a t h e r  than those i n  (2.1) 

v e l o c i t y  p r o f i l e s  (2.5) are e s t ab l i shed  a t  a considerable d i s t ance  from t h e  
bottom of t h e  channel. Therefore w e  s h a l l  assume t h a t  i n  a case of  f l u i d  
-adhesion t o  t h e  channel bottom a t  a considerable d i s t ance  from i t ,  t h e  flow 
w i l l  be described by t h e  r e l a t i o n s h i p s  (2.2) and ( 2 . 3 ) ,  which we s h a l l  u se  i n  
order t o  ob ta in  boundary conditions where x = L .  For t h i s  we mul t ip ly  (2.3) 

--. - .- - - -  -I-_ by x, and using (2.2) w e  ob ta in  _ -  - - .. 
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Similar boundary conditions are employed in [4-61. 

3 .  The equation (1.1) with boundary conditions (1.2)-(1.4) and (2.6) 
was solved by the net-point method. For this purpose (1.1) was recorded in 
the form of a system relative t o  the stream function $ and vorticity w, 
which was then solved by the method established in [SI 

The difference plan for systems (3.1), (3.2) were written just as in 
[SI. 
(h and Z are steps in the net in accordance with the x and y coordinates). 
The time step T was chosen from the stability condition of the plan depending 
on the R number. The calculation time for one variant according to the pro- 0 
gram compiled in the "ALGOL" language, where L = 2 (800 nodal points) on the 
M-20 ETsVM [electronic digital computer] amounted to 20-50 minutes, depending 
on the R number. 0 

The basic calculations were accomplished on a uniform net h = Z = 0.05 

4. We shall examine the boundary conditions f o r  functions $ and w in 
connection with the solution of system (3.1), (3.2). We shall assume that 
q(O.1) = 0. Then from (1.2)-(1.4) it is easy to obtain conditions 

. .  . .  . .  (4 11 
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The boundary conditions on the walls for w were established in the form c_ /180 
 of dependencies on values $ and w at the limiting points with the aid of 
various approximations cited in.the work [7]. 
reveal that for the difference plan utilized the convergence velocity shows 
practically no dependence on the form of the boundary conditions employed. 
The condition (2.6) on the boundary x = L is written in the form 

The results' of the calculations 
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Figure 3 .  Figure 4. 

. .. 

. .  
. _. 

._ 

..._ . .  

- .  
. .  
_ .  

Equations (4.2) were iterated 
simultaneously with the basic system 
(3.1) , (3.2). Two different numerical 
applications (4.2) were employed. In 
the first of these expressions aw/ax and 
a$/ax from (2.2) were replaced by F1' and 
F. In this case the values f o r .  $ and w 
on the boundary x = L were determined 
independkntly of the nature of the flow 

and ( 2 . 3 )  ("strict" boundary conditions) . 
In the second application the expressions 
aw/ax and a$/ax were approximated on the 
x = L with the aid of left linear three- 
point difference formulas, with an error 
of O(h2). Here the values $ and w on 
the boundary depend on the behavior of 
$ and w at limiting points con- 

revealed that the application of strict 
conditions leads to boundary effects 
which significantly distort the solution 
at limiting points. 
conditions such effects do liot arise. 

. 

J where x < L by the relationships (2.2) 
O.5 LO 

f . LO ditions). Numerical experiments have 

Figure 5. 

Under less strict 

5. Numerical calculations were accomplished in order to determine the 
influence of the value R on the nature of the flow in the initial segment of - - -  - -  -. 
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channel where, 10 < Ro < 300. 

channel bottom (b = 0) cases  were examined f o r  de l ive ry  (b > 0) o r  suc t ion  
(b < 0) of f l u i d  through t h e  bottom. 

In conjunction w i t h  t he  case of an impermeable 

Where b = 0 and w i t h  s u f f i c i e n t l y  l a rge  values Ro a s tagnat ion  zone 

develops nea r  t he  cen te r  of  t he  bottom t h e  form of a p a i r  o f  symmetrical vor- 
t i c e s ,  which slowly r o t a t e s  i n  opposi te  d i r ec t ions .  Figure 1 shows stream- 
l i n e s  f o r  b = 0 and R, = 200. The length of  t he  r o t a t i o n a l  s tagnat ion  zone z 1 - 
increases  with increase  i n  R 0 while a t  l a rge  values Ro t h i s  increase  becomes 
in s ign i f i can t  (Figure 2). Fluid ve loc i ty  i n  t h e  s tagnat ion  zone i s  very low 
and i n  t h e  range of Ro numbers under considerat ion t h e  Velocity does not  ex- 

teed 0.06 v0. 
near t h e  channel bottom. 

In o r d e r . t o  evaluate  the  s t a b i l i t y  of flows i n  the  base region t h e  velo- 
c i t y ' d i s t r i b u t i o n  i n  t h e  d i f f e r e n t  sec t ions  i s  of i n t e r e s t .  
t he  p r o f i l e s  of longi tudina l  v e l o c i t y  components f o r  b = 0 ,  Ro = 50 i n  Jif-T-. 
f e ren t  s ec t ions  of t h e  channel. In  the  i n i t i a l  s ec t ions  t h e  v e l o c i t y  p r o f i l e s  
have poin ts  of i n f l e c t i o n  which, from the  poin t  of view of the  theory of s t a -  
b i l i t y  of p a r a l l e l  flows, i nd ica t e s  t h e i r  extreme i n s t a b i l i t y .  
d i s tance  from the  channel bottom the  ve loc i ty  p r o f i l e s  take  the  form ( 2 . 5 ) ,  
obtained i n  [l] f o r  symmetrical flow with respec t  t o  the  i n i t i a l  s ec t ion .  
s h a l l  designate  by 2 
play po in t s  of i n f l e c t i o n .  

A t  high va lues  Ro t h e  value 2 

___- - 
Figure 3 gives ve loc i ty  d i s t r i b u t i o n  u(X, o) /Vo along t h e  axis 

/181 
Figure 4 shows 

A t  a c e r t a i n  

We 

is  shown i n  Figure 2 .  

t h e  segment length on which t h e  v e l o c i t y  p r o f i l e s  d i s -  2 
The dependence Z2 on t h e  R 

i s  proport ional  t o  R 
0 

0' 2 

Experiments [3] revealed t h e  in tens ive  inf luence of flow condi t ions i n  
the  base region on t h e  t r a n s i t i o n  from laminar flow t o  turbulen t  flow i n  por- 
ous pipes .  In  p a r t i c u l a r  it was found t h a t  t h e  i n d r a f t  t o  the  bottom l ed  t o  
a decrease i n  the  length of  t he  laminar segment i n  t h e  p ipe  and t h a t  suc t ion  
l ed  t o  i t s  increase .  Calculat ions made revealed f o r  a f ixed  R number with an 

increase  i n  t h e  i n d r a f t  value,  t h e  value 2 increased,  while during suc t ion  it 
decreased. 
f a c t s  c i t e d  above. 

0 
2 

This i s  one of  t h e  poss ib le  explanat ions f o r  t h e  experimental 

Figure 5 shows st reamlines  f o r  R = 50 i n  the  case of i n d r a f t  (b = 0.5) 0 
and suc t ion  (b = -0.5) through t h e  bottom. 
which occur f o r  b = 0 do not  arise. 
high suc t ion  t h e  s t reaml ines  have the  same form as during symmetrical f l u i d  
flow. 
of t h e  channel bottom and t o  inves t iga t e  flow s t a b i l i t y  (2.2) while drawing 
o f f  a p a r t  of t h e  f l u i d  through the  bottom and computing t h e  x coordinate  
from the  flow poin t ,  r a t h e r  ihan from the  channel bottom. 

In  both cases t h e  s tagnat ion  zones 
We note  t h a t  i n  the  case of comparatively 

This means t h a t  i n  experiments it is poss ib l e  t o  exclude t h e  influence 
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